DEPARTMENT OF COMPUTER SCIENCE

Syllabus for Semester-I and Semester -II

Program: M.Sc.

PROPOSED SYLLABUS FOR:

Course: Computer Science

(Choice Based Credit System (CBCS) with effect from 2021-2022)

Structure of the syllabus

This is the syllabus for the semester –I and semester –II of MSc Computer Science program to be implemented from 2021-22. The syllabus offers four theory courses and two practical courses each in each semester. One noteworthy feature of the syllabus is the introduction of Electives in different tracks in the semester II. Each elective has two tracks (track A and track B for elective I and track C and track D elective II). It is assumed that a student will continue with that track in the semester III and choose only one elective in the semester IV, the subject in which he or she wants to specialize in.

Semester I

The syllabus proposes four subjects in semester -I. Each subject has theory and practical components. **Semester –I: Theory courses**

The four theory courses offered in semester I are:

- (i) Analysis of Algorithms and Researching Computing
- (ii) Advanced Networking Concepts

- (iii) Advanced Database Systems and
- (iv) Robotics & Artificial Intelligence.

Each of these courses is of four credits each and is expected to complete in 60 hours.

The following table gives the details of the theory courses in Semester -I.

Semester – I: Theory courses

Course	Course Title	No of	Credits
Code		hours	
PPSCSI21-101	Analysis of Algorithms and Researching	60	04
	Computing		
PPSCSI21-102	Advanced Networking Concepts	60	04
PPSCSI21-103	Advanced Database Systems	60	04
PPSCSI21-104	Robotics and Artificial Intelligence	60	04
	Total Credits for Theory courses in Semester -I		16

Semester –I: Practical Lab courses

The syllabus proposes two laboratory courses of 4 credits each. The laboratory experiments from first two theory courses (PPSCSI21-101and PPSCSI21-102) are combined together and are proposed as the first practical course. Similarly, the laboratory experiments from the last two theory courses (PPSCSI21-103 and PPSCSI21-104) are combined together and called as the second practical course. As far as the practical are concerned, equal weightage similar to that of theory courses has been given in terms of the number of hours.

The following table summarizes the details of the practical courses in the semester I.

Semester I – Practical Laboratory courses

	Course Title	No of	Credits
		hours	
PPSCSI21-P101	Analysis of Algorithms & Researching Computing and	60+60=	04
	Advanced Networking Concepts	120	
PPSCSI21-P102	Advanced Database Systems and	60+60=	04
	Robotics & Artificial Intelligence	120	
Total C	redits for Practical Laboratory courses in Semester –I		08

Semester –II

The syllabus proposes four subjects in semester –II also. As in the case of semester –I, each subject has theory and practical components.

Semester II- Theory courses

The four theory courses offered in semester II are

- (i) Advanced Operating Systems
- (ii) Design and implementation of Modern Compilers
- (iii) Elective I
 - (a) Track A: Cloud Computing I (Concepts and Design of Web services)
 - (b) Track B: Cyber and Information Security I (Network Security)
- (iv) Elective II
 - (a) Track C: Business Intelligence and Big Data Analytics I (Business Intelligence)

(b) Track D: Machine Intelligence – I (Fundamentals of Machine

Intelligence)

A student can take either track A or track B from Elective - I. Similarly one can take either track C or track D from Elective - II. Each of these courses (compulsory as well as elective) is of four credits each and is expected to complete in 60 hours. The details are shown in the following table.

Semester II – Theory courses

Course	Course Title	No of	Credits
Code		hours	
PPSCSII21-201	Advanced Operating Systems	60	04
PPSCSII21-202	Design and implementation of Modern Compilers	60	04
PPSCSII21-	Elective I- Track A: Cloud Computing (Concepts		
2031	and Design of Web services)	60	04
PPSCSII21-	Elective I- Track B: Cyber and Information		
2032	Security (Network Security)		
PPSCSII21-	Elective II - Track C:Business Intelligence and Big		
2041	Data Analytics (Business Intelligence)	60	04
PPSCSII21-	Elective II - Track D: Machine Intelligence		
2042	(Fundamentals of Machine Intelligence)		

Total Credits for Theory courses in Semester II	16

Semester -II: Practical Laboratory courses

The syllabus proposes two laboratory courses of 4 credits each. The laboratory experiments from the first two theory courses (PPSCSII21-201 and PPSCSII21-201) are combined together and are proposed as the first practical course. Similarly, the laboratory experiments from the elective courses are combined together and taken as the second practical course.

The following table summarizes the details of the practical courses in the semester -II.

	Course Title	No of	Credits
		hours	
PPSCSII21	Analysis of Algorithms & Researching Computing and	60+60=	04
P201	Advanced Networking Concepts	120	
PPSCSII21	Elective I and Elective II	60+60=	04
P202		120	
Total Credits for	r Practical Laboratory courses in Semester –II	·	08

Semester II – Practical Laboratory courses

Case study: The syllabus proposes a case study under the lab course on Elective -I and Elective - II. A student is expected to select a topic related to his or her chosen track belonging to either Elective -I or Elective- II and make a case study report. It is expected that the student refers at least five research papers in the process of making the case study. By introducing the case study in the second semester, the syllabus prepares a student to take up a research project in the semester III and semester IV.

Detailed syllabus of semester – I

Course Code	Course Title	Credits	LECTURE /WEEK
	Analysis of Algorithms		
PPSCSI21-101	and Researching	04	04
	Computing		
Course Objectives: 1	• Analyze performance of algorithms.		
2. Write	correct proofs for algorithms.		
3. Demo	onstrate a familiarity with algorithms an	nd data structures.	
4. Appl	y algorithmic design paradigms and me	ethods of analysis.	
5. Unde	rstand the process of researching comp	outing.	
Expected Learning (Dutcome: 1. Argue the correctness of a	algorithms using in	ductive proofs
and invariants.			
2. Analyze worst-case	e running times of algorithms using asy	mptotic analysis.	
3. Explain what comp	etitive analysis is and to which situation	ons it applies. perfo	rm competitive
analysis.			
4. Insights of research	ing computing		
LINITS	COUDSE CONTEN'	ГС	NO. OF
UNIIS	COURSE CONTEN	15	LECTURES
	Design strategies: The Role of Algor	rithms in	
	Computing: Algorithms as a technology. Getting		
	Started: Insertion sort, Analyzing algo	orithms,	
Ι	Designing algorithms. Growth of Fun	actions:	15 L
	Asymptotic notation, Standard notation	ons and common	
	functions. Divide-and-Conquer: The	maximum-	
	subarray problem, Strassen's algorith	m for matrix	

	multiplication, The substitution method for solving		
recurrences. Probabilistic Analysis and Randomized			
Algorithms: The hiring problem, Indicator random			
	variables, Randomized algorithms.		
	Advanced Design and Analysis Techniques:		
	Dynamic Programming: Rod cutting, Elements of		
	dynamic programming, longest common subsequence.		
	Greedy Algorithms: An activity-selection problem,		
	Elements of the greedy strategy, Huffman codes.		
т	Elementary Graph Algorithms: Representations of	15 I	
11	graphs, Breadth-first search, Depth-first search.	15 L	
	Minimum Spanning Trees: Growing a minimum		
	spanning tree, Algorithms of Kruskal and Prim.		
	Single-Source Shortest Paths: The Bellman-Ford		
	algorithm, Single-source shortest paths in directed		
	acyclic graphs, Dijkstra's algorithm.		
	Number-Theoretic Algorithms and NP –		
	Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions,		
	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions,Greatest common divisor, Modular arithmetic, Solving		
	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions,Greatest common divisor, Modular arithmetic, Solvingmodular linear equations, The Chinese remainder		
	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions,Greatest common divisor, Modular arithmetic, Solvingmodular linear equations, The Chinese remaindertheorem, Powers of an element, The RSA public-key		
III	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions,Greatest common divisor, Modular arithmetic, Solvingmodular linear equations, The Chinese remaindertheorem, Powers of an element, The RSA public-keycryptosystem NP-Completeness: Polynomial time,	15 L	
III	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions,Greatest common divisor, Modular arithmetic, Solvingmodular linear equations, The Chinese remaindertheorem, Powers of an element, The RSA public-keycryptosystem NP-Completeness: Polynomial time,Polynomial-time verification, NP-completeness and	15 L	
III	Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation	15 L	
III	Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation Algorithms: The vertex-cover problem, The traveling-	15 L	
III	Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation Algorithms: The vertex-cover problem, The traveling- salesman problem, The set-covering problem, subset-	15 L	
III	Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation Algorithms: The vertex-cover problem, The traveling- salesman problem, The set-covering problem, subset- sum problem.	15 L	
III	 Number-Theoretic Algorithms and NP – Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation Algorithms: The vertex-cover problem, The traveling- salesman problem, The set-covering problem, subset- sum problem. Researching Computing: Introduction, purpose and 	15 L	
III	Number-Theoretic Algorithms and NP –Completeness : Elementary number-theoretic notions, Greatest common divisor, Modular arithmetic, Solving modular linear equations, The Chinese remainder theorem, Powers of an element, The RSA public-key cryptosystem NP-Completeness: Polynomial time, Polynomial-time verification, NP-completeness and reducibility, NP-complete problems. Approximation Algorithms: The vertex-cover problem, The traveling- salesman problem, The set-covering problem, subset- sum problem.Researching Computing: Introduction, purpose and products of research, overview of research process,	15 L 15 L	

	reviewing literature, design and creation, experiments,			
	Quantitative data analysis, presentation of research.			
Text book:				
Introduction to Ronald L. River	Algorithms, Third Edition, Thomas H. Cormen, Charles E. Leiserson, st Clifford Stein PHI Learning Pyt Ltd-New Delbi (2009)			
Rohald E. Kives Researching Inf	Ronard L. Rivest, Chilofd Stein, Fill Learning Fvt. Eld-New Denn (2009).			
• Researching hit	ormation Systems and Computing, Brinoy J Oates, Sage			
Publications Inc	lia Pvt Ltd (2006).			
References:				
Algorithms, Sar	njoy Dasgupta , Christos H. Papadimitriou, Umesh Vazirani, McGraw-Hill			
Higher Educatio	on (2006)			

• Grokking Algorithms: An illustrated guide for programmers and other curious people, MEAP, Aditya Bhargava, http://www.manning.com/bhargava

• Research Methodology, Methods and Techniques, Kothari, C.R., 1985, third edition, New Age International (2014).

 Basic of Qualitative Research (3rd Edition), Juliet Corbin & Anselm Strauss:, Sage Publications (2008).

Course Code	Course Title	Credits	LECTURE /WEEK	
PPSCSI21.102	Advanced Networking	04	04	
FFSC5121-102	Concepts	04		
Course Objective: 1. Understanding advance routing techniques.				
2. Looking head to new age networking using virtual network.				
3. Exploring new techniques in Adhoc networks.				
4. Understanding Enterprise network management				

Expected Learning Outcome: Students completing this course will be able to:			
	letworks		
		NO. OF	
UNIIS	COURSE CONTENTS	LECTURES	
	Networking:		
	Internet and Intranet, Protocol layer and their services,		
	Network Applications like Web, HTTP, FTP and		
	Electronic Mail in the Internet, Domain Name System,		
т	Transport-Layer Services, Multiplexing and	15 1	
1	Demultiplexing, UDP, TCP, TCP Congestion Control,	13 L	
	Network Layer, Virtual Circuit and Datagram Networks,		
	Need of Router, The Internet Protocol (IP), Routing		
	Algorithms, Routing in the Internet. Introduction of SDN		
	and NFV		
	Network Virtualization: Need for Virtualization, The		
	Virtual Enterprise, Transport Virtualization-VNs, Central		
п	Services Access: Virtual Network Perimeter, A	15 I	
11	Virtualization Technologies primer: theory, Network	15 L	
	Device Virtualization, Data-Path Virtualization, Control-		
	Plane Virtualization, Routing Protocols.		
	Adhoc Networking:		
	Introduction, application of MANET, challenges, Routing		
	in Ad hoc networks, topology & position based		
III	approaches, Routing protocols: topology based, position	15 L	
	based, Broadcasting, Multicasting, & Geocasting,		
	Wireless LAN, Transmission techniques, MAC protocol		
	issues, Wireless PANs, The Bluetooth technology.		
	Wireless Sensor networks:		
IV	Need and application of sensor networks, sensor networks	15 L	
	design considerations, empirical energy consumption,		

sensing and communication range, design issues,	
localization scheme, clustering of SNs, Routing layer,	
Sensor networks in controlled environment and actuators,	
regularly placed sensors, network issues, RFID as passive	
sensors.	

Text book:

- Computer Networking: A Top-Down Approach 6th edition, James F. Kurose, Keith W. Ross, Pearson (2012).
- Network Virtualization, Victor Moreno, Kumar Reddy, Cisco Press (2006).
- Ad Hoc and Sensor Networks: Theory and Applications 2nd edition; Carlos de Morais Cordeiro, Dharma Prakash Agrawal, World Scientific Publishing Company; 2 edition (2011)
- Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud

Reference book:

- TCP/IP Protocol Suite 4 edition, Behrouz Forouzan, McGraw-Hill Science (2009)
- Mobile Ad Hoc Networks: Current Status and Future Trends, Jonathan Loo, Jaime Lloret Mauri, Jesús Hamilton Ortiz, CRC Press(2011)
- Fundamentals of Sensor Network Programming: Applications and Technology, S. Sitharama Iyengar, Nandan Parameshwaran, Vir V. Phoha, N. Balakrishnan, Chuka D. Okoye, Wiley-IEEE Press (2010).

Course Code	Course Title	Credits	LECTURE /WEEK	
PPSCSI21-103	Advanced Database Systems	04	04	
Course Objective: 1. Effective implementation of database. 2. Understanding use and implementation of DDBMS.				

	3. Understanding use and implementation of OODBMS.		
	4. To lay down bases for advance Mining and Big Data analytics		
Expected Learning	g Outcome:		
1. Design database s	schema with the use of appropriate data types.		
2. To create, manip	ulate query and back up database		
UNITS	COURSE CONTENTS	NO. OF	
		LECTURES	
	Distributed Database Concepts		
	Definition of Distributed databases and Distributed		
	Database Management System (DDBMS), Distributed		
	transparent system. DDBMS Architecture: DBMS		
	standardization, Global, Local, External, and Internal		
т	Schemas, Architectural models for DDBMS.	15 1	
1	I Distributed database design: Design problem of distributed systems, Design, strategies (top-down, bottom-up), Fragmentation, Allocation and replication	15 L	
	of fragments. Query Processing Overview, Query		
	Optimization. Database Options in the Cloud, The		
	Changing Role of the DBA in the Cloud.		
	Transaction Processing in Distributed databases		
	and Parallel databases Transaction Management:		
	Definition and examples, formalization of a		
transaction, ACID properties, class transaction. Concurrency Control:	transaction, ACID properties, classification of		
	transaction. Concurrency Control: definition, execution		
II	schedules, examples, locking based algorithms,	15 L	
	timestamp ordering algorithms, deadlock management.		
	DBMS reliability: Definitions and Basic Concepts,		
	Local Recovery Management, In-place update, out-of-		
	place update, Distributed Reliability Protocols, Two		
	phase commit protocol, Three phases commit protocol.		

	Parallel Database System: Definition of Parallel		
	Database Systems. Parallel query evaluation: Speed up		
	and scale up, Query Parallelism: I/O Parallelism		
	(Data Partitioning)		
	Object Oriented, Temporal and Spatial Databases:		
	Object Oriented Database: Object Identity, Object		
	structure, Type Constructors, Encapsulation of		
	Operations, Methods, Persistence, Type and Class		
	Hierarchies, Inheritance, Complex Objects, Object-		
	oriented DBMS, Languages and Design: ODMG		
	Model, Object Definition Languages (ODL), Object		
	Query Languages (OQL). Temporal and Spatial		
Ш	Database: Introduction to Temporal Database: Time	15 L	
	ontology, structure, and granularity, Temporal data	10 2	
	models, Temporal relational algebras. Introduction to		
	Spatial Database: Definition, Types of spatial data,		
	Geographical Information Systems (GIS), Conceptual		
	Data Models for spatial databases, Logical data models		
	for spatial databases: rastor and vector model.		
	Physical data models for spatial databases:		
	Clustering methods (space filling curves), Storage		
	methods (R-tree). Query processing.		
	Deductive, Active, Multimedia and XML Databases		
	Deductive Database: Introduction to recursive queries,		
	Datalog Notation, Clause Form and Horn Clauses,		
IV	Interpretation of model: Least Model semantics, The	15 I	
1 V	fixed point operator, safe Datalog program, recursive	15 L	
	query with negation. Active Database: Languages for		
	rule specification: Events, Conditions, Actions. XML		
	and Database: Structure of XML Data, XML Document		

Schema, Querying and Transformation, Storage of	
XML Data. Introduction to multimedia database	
systems.	

Text book:

- Distributed Database; Principles & Systems By Publications, Stefano Ceri and Giuseppo Pelagatti,, McGraw-Hill International Editions (1984)
- Database Management Systems, 3rd edition, Raghu Ramakrishnan and Johannes Gehrke, McGraw-Hill (2002).
- Fundamentals of Database Systems, 6thEdition, Elmasri and Navathe, Addison. Wesley (2003).
- Unifying temporal data models via a conceptual model, C.S. Jensen, M.D. Soo, and R.T. Snodgrass: Information Systems, vol. 19, no. 7, pp. 513-547, 1994.
- Spatial Databases: A Tour by Shashi Shekhar and Sanjay Chawla, Prentice Hall, 2003 (ISBN 013-017480-7)

• Principles of Multimedia Database Systems, Subramanian V. S. Elsevier Publishers, 2013.

- Principles of Distributed Database Systems; 2nd Editied By M. Tamer Ozsu and Patrick Valduriez, Person Education Asia.
 Database System Concepts, 5th edition, Avi Silberschatz , Henry F. Korth , S. Sudarshan: McGraw-Hill (2010)
- Database Systems: Concepts, Design and Applications, 2nd edition, Shio Kumar Singh, Pearson Publishing, (2011).
- Multi-dimensional aggregation for temporal data. M. Böhlen, J. Gamper, and C.S. Jensen. In Proc. of EDBT-2006, pp. 257-275, (2006).
- Moving objects databases (chapter 1 and 2), R.H. Güting and M. Schneider: Morgan Kaufmann Publishers, Inc., (2005)
- Advanced Database Systems, (chapter 5, 6, and 7), Zaniolo et al.: Morgan
- Kaufmann Publishers, Inc., (1997).

Course Code	Course Title	Credits	LECTURE
			/WEEK
PPSCSI21-104	Robotics and Artificial	04	04
	Intelligence		
Course Objective: 1.	To Learning the working of Robot.		
2.]	How Computing in Roboting.		
Expected Learning O	utcome: 1. Understanding implementation	n of Robot.	
	2. Simulating actuators and work	ing with the same	2.
	3. Designing A.I. strategy and He	euristics.	
UNITS	COURSE CONTENTS		NO. OF
	COURSE CONTENTS		LECTURES
	Introduction to Robotics		
	What is a Robot? Definition, Histor	y of Robots:	
	Control Theory, Cybernetics, Grey W	alter Tortoise,	
	Analog Electronic Circuit, React	ive Theory,	
	Braitenberg's Vehicle, Artificial Intelli	gence, Vision	
	Based Navigation, Types of Robot C	ontrol. Robot	
	Components: Embodiment, Sensors, S	tates, Action,	
	Brains and Brawn, Autonomy, Arms,	Legs, Wheels,	
Ι	Tracks, and What really drives them	effectors and	15 L
	actuators: Effector, Actuator, Passive	e and Active	
	Actuation, Types of Actuator, Motor	rs, Degree of	
	freedom Locomotion: Stability, Movin	ng and Gaits,	
	Wheels and Steering, Staying or	n the path.	
	Manipulators: Endeffectors, Teleopera	tion, Why is	
	manipulation hard? Sensors: Types of S	ensors, Levels	
	of Processing, Passive and Active sens	ors, Switches,	
	Light		

	sensors, Resistive position sensor.	
	Sonar, Lasers and Cameras:	
	Ultrasonic and Sonar sensing, Specular Reflection,	
	Laser Sensing, Visual Sensing, Cameras, Edge	
II	Detection, Motion Vision, Stereo Vision, Biological	15 L
	Vision, Vision for Robots, Feedback or Closed Loop	
	Control: Example of Feedback Control Robot, Types of	
	feedback control, Feed forward or Open loop control.	
	Languages for Programming Robot: Algorithm,	
	Architecture, The many ways to make a map, What is	
planning, Cost of planning, Reactive systems, Action	planning, Cost of planning, Reactive systems, Action	
Ш	selection, Subsumption architecture, How to sequence	15 I
111	behavior through world, hybrid control, Behavior	15 L
	based control and Behavior	
	Coordination, Behavior Arbitration, Distributed	
	mapping, Navigation and Path planning.	
	Artificial Intelligence:	
	Introduction, State space search: Generate and test,	
	Simple search, Depth First Search (DFS), Breadth First	
	Search (DFS), Comparison and quality of solutions.	
IV	Heuristic Search: Heuristic functions, Best First Search	15 L
	(BFS), Hill Climbing, Local Maxima, Beam search,	
	Tabu search. Finding Optimum paths: Brute force,	
	branch & bound, refine search, Dijkstra's algorithm, A*	
	algorithm. Admissibility of A* algorithm.	
Text book:		
• The Ro	obotics Primer by Maja J Matarić, MIT press Cambridge, Mass	achusetts, London,
Englan	nd (2007).	
• A First	course in Artificial Intelligence, Deepak Khemani, Tata McG	raw Hill Education

- Artificial Intelligence: A Modern Approach, 3e, Stuart Jonathan Russell, Peter Norvig, Prentice Hall Publications (2010).
- Artificial Intelligence Illuminated, Ben Coppin, Jones and Bartlett Publishers Inc (2004)
- Artificial Intelligence A Systems Approach, M Tim Jones, Firewall media, New Delhi (2008)
- Artificial Intelligence -Structures and Strategies for Complex Problem Solving., 4/e, George Lugar, Pearson Education (2002).

List of practical Liperintents for Schlester 1	List of	practical	Experiment	s for S	emester – 1	I
--	---------	-----------	------------	---------	-------------	---

Co	ourse Code Course Title Cre		Credits	
PPS	CSI21-	Practical Course on Analysis of Algorithms &	04	
P10 2	1	Researching Computing & Advanced		
		Networking		
		Concepts		
Sr		List of Practical Experiments on		
No		Analysis of Algorithms and Researching Computing	ıting	
1	Write a pr	ogram to implement insertion sort and find the running time of	time of the	
	algorithm.	algorithm.		
2	Write a pro	program to implement merge sot algorithm. Compare the time and		
	memory co	complexity.		
3	Given an ar	ray of numbers of length l. Write a program to generate a random	Vrite a program to generate a random	
	permutation	n of the array using (i) permute-by-sorting() and(ii) permute-by-cyclic	and(ii) permute-by-cyclic().	
4	Write a pro	te a program to implement Longest Common Subsequence (LCS) algorithm		

5	Write a program to implement Huffman's code algorithm
6	Write a program to implement Kruskal's algorithm.
7	Write a program to implement Dijkstrass's algorithm
8	Write a program to implement Euclid's algorithm to implement gcd of two non negative
	integers a and b. Extend the algorithm to find x and y such that $gcd(a,b) = ax+by$. Compare
	the running time and recursive calls made in each
	case.
9	Write a program to verify (i) Euclid's theorem (ii) Fermat's theorem.
10	Write a program to implement greedy set cover algorithm to solve set covering
	problem.
	List of Practical Experiments on Advanced Networking Concepts
1	Create a network with three routers with RIPv2 and each router associated
	network will have minimum three PC. Show connectivity
2	Create a network with three routers with OSPF and each router associated
	network will have minimum three PC. Show connectivity
3	Create a network with three routers with BGP and each router associated network
	will have minimum three PC. Show connectivity.
4	Configure DHCP server and client for DHCP service.
5	Create virtual PC based network using virtualization software and virtual NIC
6	Create network cloud and hosts
7	Create simple Adhoc network
8	Create MANET simulation for AODVUU Network
9	Create Single mobile network
10	Create wireless network in OMNET++
Note:	Practical experiments require software tools like INET Framework for OMNeT++ or NS2,
Cisco	packet tracer 5.3 or higher, virtualization tools-VMware/virtual Box/
virtual	PC.

Course Code		Course Title	Credits	
PPS	SCSI21-	Practical Course on Advanced Database Systems	04	
P10	2	and		
		Robotics & Artificial Intelligence		
Sr		List of Practical Experiments on		
No		Advanced Database Systems		
1	For a given	a global conceptual schema, divide the schema into vertical fragmen	ts and place	
	them on di	fferent nodes. Execute queries on these	1	
	fragments t	hat will demonstrate distributed databases environment.		
2	For a given	For a given a global conceptual schema, divide the schema into horizontal fragments and plac		
	them on dif	ferent nodes. Execute queries on these		
	fragments that will demonstrate distributed databases environment.			
3	Place the re	Place the replication of global conceptual schema on different nodes and execute		
	queries that will demonstrate distributed databases environment.			
4	Create different types that include attributes and methods. Define tables for these types by		types by	
	adding suff	icient number of tuples. Demonstrate insert, update and		
	delete operations on these tables. Execute queries on them			
5	Create a ne	Create a nested table and insert sufficient number of tuples and execute queries		
6	Create a tab	Create a table with multimedia attribute and issue queries on it.		
7	Create a ter	Create a temporal database and issue queries on it.		
8	Create a tal	Create a table that stores spatial data and issue queries on it.		
9	Formulate a	ormulate a database using active rules with row and statement level.		
10	Create a XI	ML data base and demonstrate insert, update and delete operations on	rate insert, update and delete operations on	
	these tables. Issue queries on it.			
	Lis	t of Practical Experiments on Robotics & Artificial Intelligence		

1	Write a program to create a robot
	(i) With gear
	(ii) Without gear
	and move it forward, left, right
2	Write a program to create a robot with a two motor and move it forward, left, right
3	Write a program to do a square using a while loop, doing steps with a for loop, to
	change directions based on condition, controlling motor speed using switch case,
4	Write a program to create a robot with light sensors to follow a line
5	Write a program to create a robot that does a circle using 2 motors
6	Write a program to create a path following robot
7	Write a program to register obstacles
8	Write a program to implement Breadth First Search (BFS) algorithm for a given
	standard problem
9	Write a program to implement Hill Climbing algorithm for a given standard
	problem.
10	Write a program to implement A* search algorithm for a given standard problem.

Comme Conta			LECTURE
Course Code	Course 11tte	Creans	/WEEK
PPSCSII21-201	Advanced Operating Systems	04	04
Course Objective:	1. Understanding advanced Operating Syst	em concepts.	
,	2. Working with real time operating Syster	ns.	
	3. Understanding working of multiprocesso	or operating system	ems.
4. Understanding work	king of current Operating systems and othe	er trends in Opera	ating Systems
Expected Learning	Outcome: 1. Understanding various types	s of operating sys	stems.
	2. Working with real time & cl	uster	
UNITS	COURSE CONTENTS		NO. OF
UNIIS			LECTURES
	Linux Operating Systems:		
	Introduction to kernel, Types of kernel (r	nonolithic,	
I -	micro, exo), Operating system booting pr	ocess GRUB-	15 L
	I, GRUB-II. Processes, Interprocess Com	munication,	
	Scheduling.		
	Memory management and virtual men	nory in Linux:	
	Basic memory management, swapping, v	irtual memory,	
II	Page replacement algorithms, Design issue	ues for paging	15 L
	systems, segmentation. Case Study: Linu	x memory	
	management.		
	Input/ Output in Linux:		
	Principles of I/O Hardware, Principles o	f I/O Software,	
III Deadlocks, RAM	Deadlocks, RAM Disks, Disks, T	erminals. File	15 L
	Systems: Files, Directories, I	File System	10 1
	Implementation, Security, Protection	nechanisms in	
	different Linux versions		
IV	Android Operating System:		15 L

The Android Software Stack, The Linux Kernel – its
functions, essential hardware drivers. Libraries -
Surface Manager, Media framework, SQLite, WebKit,
OpenGL. Android Runtime - Dalvik Virtual Machine,
Core Java Libraries. Application Framework - Activity
Manager, Content Providers, Telephony Manager,
Location Manager, Resource Manager. Android
Application – Activities and Activity Lifecycle,
applications such as
SMS client app, Dialer, Web browser, Contact manager

Text book:

- An Introduction to Operating Systems: Concepts and Practice (GNU/Linux), 4th edition, Pramod Chandra P. Bhatt, Prentice-Hall of India Pvt. Ltd, 2014.
- Operating System Concepts with Java Eight Edition, Avi Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley & Sons, Inc., 2009, http://codex.cs.yale.edu/avi/os-book/OS8/os8j
- UNIX and Linux System Administration Handbook, Fourth Edition, Evi Nemeth, Garth Snyder, Tren Hein, Ben Whaley, Pearson Education, Inc, 2011,
- PROFESSIONAL Android[™] 4 Application Development, Reto Meier, John Wiley & Sons, Inc. 2012.

- Operating Systems: Design and Implementation, Third Edition, Andrew S. Tanenbaum, Albert S. Woodhull, Prentice Hall, 2006.
- Fedora Documentation, http://docs.fedoraproject.org/en-US/index.html
- Official Ubuntu Documentation, https://help.ubuntu.com/ Android Developers, http://developer.android.com/index.html.

		0 14	LECTURE
Course Code	Course Title	Credits	/WEEK
PPSCSI121_202	Design and implementation	04	04
115051121-202	of Modern Compilers	04	04
Course Objective 1	. The Objectives of this course is to explor	e the principles,	algorithms, and
data structures invol	ved in the design and construction of comp	pilers.	
2. Topics include	context-free grammars, lexical analysis, pa	rsing techniques	, symbol tables,
	error recovery, code generation, and code	optimization.	
Expected Learning	Outcome: 1. After completion of this cou	rses each studen	t will implement
a compiler for a sma	ll programming language.		
UNITS	COURSE CONTENTS		NO. OF
011115	COURSE CONTENTS		LECTURES
	Introduction to Compilers		
	The structure of a compiler, A simple approach to the		15 I
	design of lexical analyzers, Regular expressions, Finite		
Т	automata, From regular expressions to finite automata,		
1	Minimizing the number of states of a DFA, Context-		15 L
	free grammars, Derivations and Parse trees, Parsers,		
	Shift-reduce parsing, Operator-precedence	ce parsing,	
	Top- down parsing, Predictive parsers.		
	Automatic Construction of Efficient Pa	arsers	
	LR parsers, The canonical collection of I	LR(0) items,	
	Constructing SLR parsing tables, Constructing		
II	canonical LR parsing tables, Constructing LALR		15 L
	parsing tables, Using ambiguous grammars, An		
	automatic parser generator, Implementati	ion of LR	
	parsing tables, Constructing LALR sets of	of items.	
	Advanced syntax analysis and b	asic semantic	
III	analysis		15 L

	Syntax-directed translation schemes, Implementation	
	of syntax-directed translators, Initial introduction to	
	the ongoing Tiger compiler, bindings for the Tiger	
	compiler, type- checking expressions, type-checking	
	declarations, activation records, stack frames, frames	
	in the Tiger compiler, translation to intermediate code,	
	intermediate representation trees, translation into trees,	
	declarations, basic blocks and traces, taming	
	conditional branches, liveness analysis, solution of	
	dataflow equations, liveness in the	
	Tiger compiler, interference graph construction.	
	Dataflow analysis and loop optimization	
	The principle sources of optimization, Loop	
	optimization: The DAG representation of basic blocks,	
	Dominators, Reducible flow graphs, Depth-first search,	
IV	Loop-invariant computations, Induction variable	15 I
ĨV	elimination, Some other loop optimizations. Dataflow	15 L
	Analysis: intermediate representation for flow analysis,	
	various dataflow analyses, transformations using	
	dataflow analysis, speeding up dataflow analysis, alias	
	analysis.	
Text book•	1	

- Compilers: Principles, Techniques and Tools 2nd edition, Alfred V. Aho, Monica
 S. Lam, Ravi Sethi, Jeffrey D. Ullman, Pearson (2011)
- Modern Compiler Implementation in Java, Second Edition, Andrew Appel and Jens Palsberg, Cambridge University Press (2004).

- Principles of Compiler Design, Alfred Aho and Jeffrey D. Ullman, Addison Wesley (1997).
- Compiler design in C, Allen Holub, Prentice Hall (1990).

Course Code	Course Title	Credits	LECTURE /WEEK
PPSCSII21-2031	Elective I- Track A: Cloud Computing (Concepts and Design of Web services)	04	04
Course Objective:	1. Working cloud architecture and designing the second sec	ng solutions.	
:	2. Understating the SOA.		
	3. Working SOAP		
Expected Learning	Outcome: 1. Launching web services on	cloud.	
	2. Understand and implement	of SOA	
UNITS	COURSE CONTENTS		NO. OF
			LECTURES
	Web Service as distributed application	: The Service	
	Endpoint Interface (SEI) and Service Implementation		
	Bean (SIB), JAX-WS, Publishing Web Service, Calling		
Ι	Web Service from applications developed in different		15 L
	platform, SOAP, Message transport, Service contract,		
	Web Services returning Richer Data type	es, WSDL	
	structure.		
	SOAP Based Web Services		
п	Structure of SOAP Message (In JAX-WS	S), SOAP	
	Messaging Architecture, SOAP Header,	Client-side	15 I
	SOAP Handler, Generating a Fault, Serv	ice-side SOAP	15 L
	Handler, Handler methods, Message Cor	itext and	
	Transport Headers, Web Services and Bi	nary Data.	

	REST-style Web Services			
	What is REST? HTTP methods, Java API for RESTful			
	Web Services (JAX-RS), JAX-RS with Jersey, CRUD			
III	RESTful Web Service, SOAP and REST in Harmony,	15 L		
	Interoperability between the Java Platform and WCF,			
	WSIT, Web Services Security, Wire-Level Security,			
	WS-Security.			
	Amazon Web Services (AWS) Essentials			
	Architecting on AWS, Building complex solutions with			
	Amazon Virtual Private Cloud (Amazon VPC),			
	Leverage bootstrapping and auto configuration in			
IV	designs, Architect solutions with multiple regions,	15 L		
	Employ Auto Scaling design patterns, Amazon			
	CloudFront for caching, Big data services including			
	AWS Data Pipeline, Amazon Redshift and Amazon			
	Elastic MapReduce. AWS OpsWorks.			
Text book:	I	<u> </u>		
 Java Web Serv 	vices Up and Running 2 nd edition Martin Kalin, O'Reilly (2013)		
Java web Ser	vices op and Running 2 – edition, Martin Rann, O Renny (2013)		
Pro Power She	ell for Amazon Web Services, Brian Beach, Apress, 2014.			
Reference:				
Programming	Amazon EC2, Jurg van Vliet, Flavia Paganelli, O'Reilly M	ledia, 2011.		
• JAX-WS Refe	• JAX-WS Reference Implementation (RI) Project, https://jax-ws.java.net/.			
• Java API for F	• Java API for RESTful Services (JAX-RS), https://jax-rs-spec.java.net/.			
• RESTful Web Services in Java, https://jersey.java.net/.				
• AWS Training, <u>http://aws.amazon.com/training</u> .				

Course Code	Course Title	Credits	
PPSCSII21-2032	Elective I - Track B: Cyber and Information Security (Network and Communication Security)	04	04
Course Objective:	1. Computer Security protocols.		
	2.Understanding networking security · Un	derstanding clou	d security
Expected Learning	Outcome: 1. Working with mobile and c	loud security.	
	2. Developing application to understand o	computer and net	work security
UNITS	COURSE CONTENTS		NO. OF LECTURES
Ι	Computer Security Principles of Security, Different Attacks: non-malicious program, Types of Compu Operating System Security: Protected ob methods of protection. Memory address Fence, Relocation, Base/Bound Registers Architecture, Segmentation, Paging, Dire control list. Database Security: Security I Integrity, Confidentiality, Availability, R Database, Sensitive data, Multilevel data for multilevel security.	malicious and ater Criminals. jects and protection: s, Tagged ectory, access requirements, aeliability of base, Proposals	15 L
II	Network Security Different types of network layer attacks, (ACL, Packet Filtering, DMZ, Alerts an – IDS,IPS and its types (Signature based based, Policy based, Honeypot based). W	Firewall d Audit Trials) , Anomaly /eb Server	15 L

	Security: SSL/TLS Basic Protocol-computing the keys-	
	client authentication-PKI as deployed by SSL Attacks	
	fixed in v3- Exportability- Encoding-Secure Electronic	
	Transaction (SET), Kerberos.	
	Cloud Security	
	How concepts of Security apply in the cloud, User	
	authentication in the cloud; How the cloud provider can	
	provide this- Virtualization System Security Issues: e.g.	
	ESX and ESXi Security, ESX file system security-	
111	storage considerations, backup and recovery-	15 L
	Virtualization System Vulnerabilities, security	
	management standards- SaaS, PaaS, IaaS availability	
	management- access control- Data security and storage	
	in cloud.	
	Mobile Security:	
	Mobile system architectures, Overview of mobile	
	cellular systems, GSM and UMTS Security &	
	Attacks, Vulnerabilities in Cellular Services, Cellular	
	Jamming Attacks & Mitigation, Security in Cellular	
IV	VoIP Services. Mobile application security. Securing	15 L
	Wireless Networks: Overview of Wireless Networks.	-
	Scanning and Enumerating 802.11 Networks.	
	Attacking 802.11 Networks Bluetooth Scanning and	
	Reconnaissance	
	Bluetooth Eavesdropping Attacking & Exploiting	
	Bluetooth Zigbee Security & Attacks	
Text book •	Blactooli, Zigoce Security & Fituers.	
I CAL DUUR.		
• Security in	Computing 4th edition, Charles P. Pfleeger,	Charles P.

- Mobile and Wireless Security and Privacy, Kia Makki, Peter Reiher, Springer, (2007).
- Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance (Theory and practice), Tim Mather, Subra Kumaraswamy, Shahed Latif., O'Reilly Media; 1 edition (2009).

- Cloud Security: A Comprehensive Guide to Secure Cloud Computing, Ronald L. Krutz, Russell Dean Vines, Wiley (2010)
- Network Security, Charlie Kaufman, Radia Perlam, Mike Speciner, Prentice Hall, 2nd Edition (2002)
- Cryptography and Network Security 3rd edition, Atul Kahate, Tata McGraw Hill Education Private Limited (2013)
- Network Security, Charlie Kaufman, Radia Perlam, Mike Speciner, Prentice Hall, 2nd Edition (2002)
- Cryptography and Network Security: Principles and practice 6th edition, William Stallings, Pearson Education (2013).

Course Code	Course Title	Credits	LECTURE /WEEK
	Elective II - Track C: Business Intelligence and Big		
PPSCSII21-2041	Data Analytics (Business	04	04
	Intelligence)		
Course Objective:	1. Understanding Business Intelligence.		
2. Understanding OLTP and OLAP.			
3. Understanding Data warehousing and mining			
Expected Learning Outcome: 1. Developing and understanding business intelligence systems.			

2. Working data war	2. Working data warehousing and mining for DSS		
UNITS	ITS COURSE CONTENTS		
		LECTURES	
	Introduction to Business Intelligence: Operational		
	and Decision Support System, Data-Information-		
	Knowledge-Decision making-Action cycle. Basic		
	definitions- Business Intelligence; Data warehousing,		
	Business Intelligence architecture, Use and benefits of		
т	Business Intelligence. Knowledge Discovery in	15 I	
1	Databases: KDD process model, Data Pre-processing:	15 L	
	Cleaning: Missing Values; Noisy Values; Inconsistent		
	values; redundant values. Outliers, Integration,		
	transformation, reduction, Discretization: Equal Width		
	Binning; Equal Depth Binning, Normalization,		
	Smoothing.		
	Introduction to Business Data Warehouse:		
	Definition of Data warehouse, Logical architecture of		
TT	Data Warehouse, Data Warehouse model- Enterprise	1 <i>5</i> T	
11	warehouse; Data Marts; Virtual warehouse. Populating	15 L	
	business Data Warehousing: data integration and		
	extract, transform, load (ETL).		
	Designing Business Data Warehouse:		
	OLTP and OLAP systems, Designing business		
III	information warehouse: Principles of dimensional	15 L	
	modeling, Data cubes, Data cube operations, data cube		
	schemas.		
	Introduction to Data Mining: Data mining definitions		
IV	and process: business and data understanding.	15 I	
1 V	Association Analysis: Definition of association rule,	15 L	
	General issues: Support; Confidence; Lift; Conviction,		

Frequent Item sets: APriori Algorithm; Issues with APriori Algorithm, Data structures: Hash tree and FP tree.

Text book:

- Business Intelligence (2nd Edition), Efraim Turban, Ramesh Sharda, Dursun Delen, David King, Pearson (2013)
- □ Business Intelligence for Dummies, Swain Scheps, Wiley Publications (2008).
- □ Building the Data Warehouse, Inmon: Wiley (1993).
- Data Mining: Introductory and Advanced Topics, Dunham, Margaret H, Prentice Hall (2006)
- Data Mining: Practical Machine Learning Tools and Techniques, Second Edition,
 Witten, Ian and Eibe Frank, Morgan Kaufmann (2011)

- Business Intelligence Road Map, Larissa T. Moss, Shaku Atr, Addison-Wesley
- Data Modeling Techniques for Data Warehousing by IBM; International Technical Support Organization, Chuck Ballard, Dirk Herreman, Don Schau, Rhonda Bell, Eunsaeng Kim, Ann Valencic :http://www.redbooks.ibm.com
- Data Mining: Concepts and Techniques, The Morgan Kaufmann Series in Data Management Systems, Han J. and Kamber M. Morgan Kaufmann Publishers, (2000).
- Data Mining with Microsoft SQL Server 2008, MacLennan Jamie, Tang ZhaoHui and Crivat Bogdan, Wiley India Edition (2009).

Course Code	Course Title	Credits	LECTURE
			/WEEK
PPSCSII21-2042	Elective II - Track D: Machine Learning (Fundamentals of Machine Learning)	04	04
Course Objective:	1. Understanding various learning strategie	es.	
2. 1	Mathematical representation of Machine le	earning problems	and solutions
Expected Learning methods. 2. Developing mach	Outcome: 1. Machine learning using line ine learning architectures for clustering	ar methods and i	non linear
UNITS	COURSE CONTENTS		NO. OF
	COURSE CONTENTS		LECTURES
Ι	Learning-Standard Linear methods Statistical Learning: What Is Statisti Assessing Model Accuracy. Linear Regre Linear Regression, Multiple Linear Regre Considerations in the Regression Marketing Plan, Comparison of Linear with K-Nearest Neighbors. Classi Overview of Classification, Why Regression? , Logistic Regress Discriminant Analysis, ,A Cor Classification Methods.	cal Learning, ession: Simple ressions, Other Model, The ar Regression fication: An Not Linear ion, Linear nparison of	15L
II	Selection and improvements of line methods Resampling Methods: Cross-Validation, Linear Model Selection and Regularization	near learning The Bootstrap. on: Subset	15L

		Selection, Shrinkage Methods, Dimension Reduction	
		Methods, Considerations in High Dimensions.	
		Non-Linear Learning methods	
		Polynomial Regression, Step Functions, Basis	
	III	Functions, Regression Splines, Smoothing Splines,	151
	111	Local Regression, Generalized Additive Models, Tree-	152
		Based Methods: The Basics of Decision Trees.	
		Bagging, Random Forests, Boosting.	
		Support Vector machines, Principle Component	
		Analysis and Clustering: Support Vector Machines:	
		Maximal Margin Classifier. Support Vector	
		Classifiers: Support Vector Machines, SVMs with	
	IV	More than Two Classes Relationship to Logistic	15L
		Regression. Unsupervised Learning: The Challenge of	
		Unsupervised Learning, Principal Components	
		Analysis, Clustering Methods: K-Means Clustering,	
		Hierarchical Clustering, Practical Issues in Clustering.	
Text bo	ook:		
	An Introduction	on to Statistical Learning with Applications in R: Gareth Ja	mes, Daniela
	Witten, Trevor	r Hastie, Robert Tibshirani, Springer 2013.	
	The Elements	of Statistical Learning: Data Mining, Inference, and Predic	tion (Second
	Edition) : Trev	or Hastie, Robert Tibshirani, Jerome Friedman, Springer	
	(2008).		
Referen	nce:		
•	Introduction t	o Machine Learning (Second Edition): Ethem Alpavdu	n The MIT Press
	(2010).		
•	Pattern Recognition and Machine Learning: Christopher M. Bishon, Springer (2006)		
•	Bayesian Rea	soning and Machine Learning: David Barber. Cambridg	e University Press
	(2012)	<i>a a a a a a a a a a a a a a a a a a a </i>	,

- Machine Learning: The Art and Science of Algorithms that Make Sense of Data: Peter Flach, Cambridge University Press (2012) Machine Learning for Hackers: Drew Conway and John Myles White, O'Reilly (2012)
- Machine Learning in Action: Peter Harrington, Manning Publications (2012).
- Machine Learning with R: Brett Lantz, Packt Publishing (2013)
- https://class.coursera.org/ml-005/lecture/preview
- https://github.com/josephmisiti/awesome-machine-learning.

List of Practical Experiments for Semester –II

Cou	irse Code	Course Title	Credits
PPSCSII21		Practical Course on Advanced Operating Systems &	04
P201 Design and implementation of Modern Compilers			
Sr		List of Practical Experiments on	
No	Advanced Operating Systems		
1	Port 17 is known as the 'Quote of the day service'. When a client connects to port 17 on a		
	server, the server responds with a quote for that day. Write a server program so that it delivers		
	a quote of the day. The quotes should be printable ASCII characters and should contain fewer		
	than 512 characters, although multiple lines are allowed. Since port 17 is considered well		
	known and therefore unavailable, have your server listen to port 6017. Write the client code		
	used to		
	read the quotes returned by the server.		

2	Write a client–server application using Java sockets that allows a client to write a message (as
	a String) to a socket. A server will read this message, count the number of characters and
	digits in the message, and send these two counts back to the client. The server will listen to
	port 6100. The client can obtain the String message that it is to pass to the server either from
	the command line or by using a prompt to the user. One strategy for sending the two counts
	back to the client is for the server to construct an object containing :
	a. The message it receives from the client
	b. A count of the number of characters in the message
	c. A count of the number of digits in the message.
3	Write a multithreaded Java program that outputs prime numbers. This program
	should work as follows: The user will run the program and will enter a number on
	the command line. The program will then create a separate thread that outputs all
	the prime numbers less than or equal to the number entered by the user.
4	Servers can be designed to limit the number of open connections. For example, a server may
	wish to have only N socket connections open at any point in time. After N connections have
	been made, the server will not accept another incoming connection until an existing
	connection is released. Write Java programs to
	demonstrate the scenario
5	Assuming that a system has a 32-bit virtual address, write a Java program that is passed (1)
	the size of a page and (2) the virtual address. Your program will report the page number and
	offset of the given virtual address with the specified page size. Page sizes must be specified
	as a power of 2 and within the range 1024 — 16384 (inclusive). Assuming such a program
	is named Address, it would run as follows:
	java Address 4096 19986
	and the correct output would appear as: The
	address 19986 contains:
	page number = 4
	offset = 3602.

6	Write a Java program that simulates the following disk-scheduling algorithms. Design					
	separate classes that implement the following scheduling algorithms:					
	a. FCFS					
	b. SSTF					
	c. SCAN					
	d. C-SCAN					
	e. LOOK					
	Each algorithm will implement the following interface:					
	public interface DiskScheduler					
	{					
	// service the requests					
	// return the amount of head movement					

	// for the particular algorithm
	public int servicePequeets():
	public lift serviceRequests(),
	The service Pequests() method will return the amount of head movement required by the
	disk schoduling algorithm
7	
/	Write a program that implements the FIFO and LRU page-replacement algorithms
	presented in this chapter. First, generate a random page reference string where page
	numbers range from 0 to 9. Apply the random page-reference string to each algorithm, and
	record the number of page faults incurred by each algorithm. Implement the replacement
	algorithms so that the number of page frames can vary as well. Assume that demand paging
	is used. Design and implement two classes—LRU and FIFO—that extend
	ReplacementAlgorithm. Each of these classes will implement the insert() method, one class
	using the LRU page- replacement algorithm and the other using the FIFO algorithm. Test
	your
	algorithm with suitable Java programs.
8	Using Worker thread write Android code for a click listener that downloads an
	image from a separate thread and displays it in an ImageView.
9	Write Android activity that includes each of the fundamental lifeavels methods
-	while Android activity that includes each of the fundamental medycle methods.
10	Write Android application to demonstrate data storage with following options (any one can
10	Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination):
10	Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs)
10	Write Android activity that includes each of the fundamental inecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External
10	Write Android activity that includes each of the fundamental inecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite
10	 Write Android activity that includes each of the fundamental infecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite Databases (Store structured data in a private database)
10	 Write Android activity that includes each of the fundamental infecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite Databases (Store structured data in a private database) Network Connection (Store data on the web with your own network server).
10 Note:	 Write Android activity that includes each of the fundamental incevcie methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite Databases (Store structured data in a private database) Network Connection (Store data on the web with your own network server). The above practical experiments require following system requirements:
10 Note:	 Write Android activity that includes each of the fundamental inecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite Databases (Store structured data in a private database) Network Connection (Store data on the web with your own network server). The above practical experiments require following system requirements: Linux OS Ubuntu® 14.04 with following configurations (use 64 bit)
10 Note:	 Write Android activity that includes each of the fundamental inecycle methods. Write Android application to demonstrate data storage with following options (any one can be asked in Practical examination): Shared Preferences (Store private primitive data in key-value pairs) Internal Storage (Store private data on the device memory) External Storage (Store public data on the shared external storage) SQLite Databases (Store structured data in a private database) Network Connection (Store data on the web with your own network server). The above practical experiments require following system requirements: Linux OS Ubuntu® 14.04 with following configurations (use 64 bit) GNOME or KDE desktop

➤ 4 GB RAM

Sufficient hard disk space

- > At least 1 GB for Android SDK, emulator system images, and caches
- > 1280 x 800 minimum screen resolution
- Oracle® Java Development Kit (JDK) 7
- Android Studio.

	List of Experiments on Design and implementation of Modern Compilers
1	Write a program to convert the given NDFA to DFA.
2	Write a program to convert the given Right Linear Grammar to Left Linear
	Grammar form.
3	Write a program to illustrate the generation on SPM for the input grammar.
4	Write a program to illustrate the generation on OPM for the input operator
	grammar
5	Implement a simple program analyzer and interpreter for the straight-line
	programming language
6	Add semantic actions to your parser to produce abstract syntax for the MiniJava
	language together with a PrettyPrintVisitor
7	Design a set of visitors, which translate a MiniJava program into intermediate
	representation trees
8	Implement the translation to Assem instructions for your favorite instruction set
	(let µ stand for Sparc, Mips, Alpha, Pentium, etc.) using maximal munch.
9	Write a code to generate the DAG for the input arithmetic expression.

10	Write a program to demonstrate loop unrolling and loop splitting for the given
	code sequence containing loop.

Course Code		e Course Title				
PPS	CSII21-	Practical Course on Elective I and Elective II	04			
P202						
Sr	List of Practical Experiments on					
No	Elec	tive I-Track A:Cloud Computing (Concepts and Design of Web s	ervices)			
1	Develop Time Server service that returns current time in Java and call it from					
	clients deve	eloped in Java, PHP, Android and .NET.				
2	Develop W	eb service in Java that returns complex data types (e.g. as List of				
	friends).					
3	Develop W	eb service in Java that returns matrix multiplication by Strassen's				
	algorithm.	Two matrices will be entered at run time by client. Server does the ma	atrix			
	multiplicati	on and returns answer to client.				
4	Demonstrat	te CRUD operations with suitable database using SOAP or RESTful				
	Web servic	e.				
5	Develop M	icro-blogger application (like Twitter) using RESTful Web services.				
6	Develop application to consume Google's search / Google's Map RESTful Web					
	service.					
7	Develop W	CF service returning response in JSON type.				
8	Develop ap	plication to download image/video from server or upload image/video	0			
	to server us	ing MTOM techniques.				
9	Using AW	/S Flow Framework develop application that includes a simple	le workflow.			
	Workflow	calls an activity to print hello world to the console. It must define th	e basic usage			
	of AWS F	low Framework, including defining contracts, implementation of a	activities and			
	workflow c	oordination logic and worker programs				
	to host them.					
10	Using AWS	S Flow Framework develop application, 'Booking' for making a				

reservation, including flight and rental car.

Note: The following software is required for conducting the above experiments.

- OS: Linux OS Ubuntu® 14.04 (use 64 bit) / Windows 7 (64 bit)
- JDK 1.7
- LAMP/WAMP Server
- AWS SDK for Java
- Microsoft Visual Studio 10
- Android Studio.

List of Practical Experiments on

Elective I-Track B: Cyber &Information Security (Network & Comm. Security)

1	Write a program to store username and password in an encrypted form in a
	database to implement integrity lock.
2	Write SQL query to retrieve sensitive information from less sensitive queries
3	Write SQL query to create a view to implement concept of views and commutative
	filter in distributed databases.
4	Write a program to implement SSL.
5	Write a program to send an encrypted email.
6	Write a program to digitally sign MIME to create an 'opaque' signature.
7	Write a program to generate DSA SSH key.
8	Write a program to implement multilevel security.
9	Write a program to Demonstrates how to encrypt and decrypt the content of an
	XML node using 128-bit CBC AES encryption.

	List of Practical Experiments on		
Elective II - Track C: Business Intelligence & Big Data Analytics			
	(Business Intelligence)		
1	Create tables using different applications.		
2	Develop an application to design a warehouse by importing various tables from external sources.		

3	Develop an application to creating a fact table and measures in a cube.						
4	Develop an application to create dimension tables in a cube and form star						
	schema.						
5	Develop an application to create dimension tables in a cube and form snowflake						
	schema.						
6	Develop an application to create a dimension table from Parent-Child schema.						
7	Develop an application to demonstrate operations like roll-up, drill-down, slice,						
	and dice.						
8	Develop an application to demonstrate processing and browsing data from a						
	cube.						
9	Develop an application to pre process data imported from external sources.						
10	Create association rules by considering suitable parameters.						
	List of Practical Experiments on						
	Elective II -Track D: Machine Intelligence						
	(Fundamentals of Machine Intelligence)						
1	Implement simple linear regression model on a standard data set and plot the						
	least square regression fit. Comment on the result.						
	[One may use inbuilt data sets like Boston, Auto etc]						
2	Implement multiple regression model on a standard data set and plot the						
	least square regression fit. Comment on the result.						
	[One may use inbuilt data sets like Carseats, Boston etc].						

3	Fit a classification model using following:
	(i) logistic regression
	(ii) Linear Discriminant Analysis (LDA) and
	(iii) Quadratic Discriminant Analysis (QDA)
	on a standard data set and compares the results. [Inbuilt datasets like Smarket,
	Weekly, Auto, Boston etc may be used for the purpose].
4	Fit a classification model using K Nearest Neighbour (KNN) Algorithm on a
	given
	data set. [One may use data sets like Caravan, Smarket, Weekly, Auto and
	Boston].
5	Use bootstrap to give an estimate of a given statistic. [Datasets like Auto,
	Portfolio
	and Boston etc may be used for the purpose].
6	For a given data set, split the data into two training and testing and fit
	the following on the training set:
	(i) Linear model using least squares
	(ii) Ridge regression model
	(iii) Lasso model
	(iv) PCR model
	(v) PLS model
	Report test errors obtained in each case and compare the results. [Data sets like
	College, Boston etc may be used for the purpose].

7	For a given data set, perform the following:
	(i) Perform the polynomial regression and make a plot of the
	resulting polynomial fit to the data.
	(ii) Fit a step function and perform cross validation to choose the
	optimal number of cuts. Make a plot of the fit to the data.
	[Use data set like Wage for the purpose].
8	For a given data set, do the following:
	(i) Fit a classification tree
	(ii) Fit a regression tree
	[One may choose data sets like Carseats, Boston etc for the purpose].
9	For a given data set, split the dataset into training and testing. Fit the
	following models on the training set and evaluate the performance on the
	test set:
	(i) Boosting
	(ii) Bagging
	(iii) Random Forest
	[Data sets like Boston may be used for the purpose].
10	Fit a support vector classifier for a given data set. [Data sets like Car, Khan,
	Boston etc may be used for the purpose].

11 Perform the following on a given data set:

(i) Principal Component Analysis

(ii) Hierarchical clustering.

[Data set like NC160, USArrests etc may be used for the purpose].

Note: The above practical experiments require the R Software.

Scheme of Examination for Theory Courses

There will be an internal and external examination for the theory courses. The weightage of internal/external and scheme of examination will be as per common guidelines provided by the University for the PG courses in the faculty of Science.

External	60 marks			
	40	Attendance & Active	Open book	Unit test
Internal	marks	Participation	test	(MCQ)
		10	10	20

Scheme of Examination for Practical Courses

There will not be any internal examination for practical courses.

External Examination for Practical Courses:

The particulars of the external examination for each practical course are given below:

Sr	Semester	Course	Particular	No of	Marks/	Total
No		Code		questions	question	Marks
1			Laboratory experiment			
			question with internal	2	40	80
	I		choice			
2	-		Journal	-	10	10
3			Viva	-	10	10
-						
			Total Marks		100	
1			Laboratory experiment	2	40	80
	Ι		question with internal			

			choice			
2			Journal	-	10	10
3			Viva	-	10	10
		Total Marks		100		
Sr	Semester	Course	Particular	No of	Marks/	Total
No		Code		questions	question	Marks
1	II		Laboratory experiment question with internal choice	2	40	80
2			Journal	-	10	10
3			Viva	-	10	10
		Total Marks		100		
1	II		Laboratory experiment question with internal choice	2	25	50
2			Journal	-	10	10
3			Viva	-	10	10
4			Evaluation of Case Study	1	30	30

Guidelines for Case Study in the Semester -II

The syllabus proposes introduction of a case study to be done by students in the semester –II. The objective of this step is to make learning more student-centric and to create a sense of involvement. Student can choose any topic related to one of the elective courses chosen by him or her. It is expected that the student refers to at least FIVE research papers as part of the case study. Working on a case study is expected to help the student to appreciate the coverage of the topics discussed in the 'Analysis of algorithms and researching computing' course studied in the semester I. This would also help the student to choose a good project topic and undertake a rigorous literature review needed for the project to be undertaken in the semester III and semester IV.

- > The case study can be taken by students individually or as a group of two.
- The efforts for the case study should be spread over a period of at least 8 weeks.
- The case study should cover a topic related to one of the electives chosen by the student.
- Student should make a case study report of around 10-15 pages and submit during the practical examination.
- A presentation and viva based on the case study will be undertaken during the practical examination.

The following are some examples of case studies for each track. The list is only for illustration purpose and students are advised to choose a topic of their interest.

Elective – I: Track A: Cloud Computing

- Consumption of REST services in heterogeneous environment by an Android client.
- Service Oriented Architecture (SOA) approach to support heterogeneity, decentralization and fault tolerance in large distributed systems.
- Cloud security measures adopted in Elastic Compute Cloud (EC2) of Amazon Web Services (AWS)

Elective – I: Track B: Cyber and Information Security

- Game theoretic approach to shield collaborative wireless network.
- Application of emoticons in the area of cryptography.
- Digital Watermarking techniques for encryption and decryption

Elective – II: Track C: Business Intelligence and Big Data Analytics

- Assuming that you have been engaged to submit a blue print for the development of a data warehouse for an e-commerce company, make a project report detailing different steps to be taken for the purpose.
- Effectiveness of Hadoop as an open source companion to standard data warehouses.
- Emerging trends on cloud based business intelligence and analytics.

Elective – II: Track D: Machine Intelligence

- Machine intelligence approaches in stock market prediction.
- Recognizing Devnagri scripts using different machine intelligence techniques.
- Identify an area where support vector machines are used and discuss different approaches applied.

Guidelines for maintenance of journals:

A student should maintain a journal with at least ten practical experiments reported for each of the practical course. Related theory/algorithm need to be explained in journal. Certified journals need to be submitted at the time of the practical examination.